

Data Sheet

		TYPICAL VALUES(2)									
ELECTRICAL PROPERTIES(1)		тммз	TMM4	TMM6	TMM10	TMM10i	TMM13i	DIRECTION	UNITS	CONDITIONS	TEST METHOD
(1) Dielectric Constant (process)		3.27 ± 0.032	4.50 ± 0.045	6.00 ± 0.080	9.20 ± 0.230	9.80 ± 0.245	⁽³⁾ 12.85 ± 0.35	Z	-	10 GHz	IPC-TM-650 method 2.5.5.5
⁽²⁾ Dielectric Constant (design)		3.45	4.70	6.3	9.8	9.9	12.2	-	-	8 GHz - 40 GHz	Differential Phase Length Method
(1) Dissipation Factor (process)		0.0020	0.0020	0.0023	0.0022	0.0020	0.0019	Z	-	10 GHz	IPC-TM-650 method 2.5.5.5
Thermal Coefficient of Dielectric Constant		+37	+15	-11	-38	-43*	-70	-	ppm/°K	-55 to +125℃	IPC-TM-650 method 2.5.5.5
Insulation Resistance		>2000	>2000	>2000	>2000	>2000	>2000	-	Gohm	C/96/60/95	ASTM D257
Volume Resistivity		3X10 ⁹	6X10 ⁸	1X10 ⁸	2X10 ⁸	2X10 ⁸	-	=	Mohm cm	-	ASTM D257
Surface Resistivity		>9X10 ⁹	1X10°	1X10 ⁹	4X10 ⁷	4X10 ⁷	-	-	Mohm	-	ASTM D257
Electrical Strength (dielectric strength)		441	371	362	285	267	213	Z	V/mil	-	IPC-TM-650 method 2.5.6.2
Thermal Prop	erties ⁽¹⁾										
Decomposition Temperature (Td)		425	425	425	425	425	425	425	°C TGA	-	ASTM D3850
Coefficient of Thermal Expansion - x		15	16	18	21	19	19	Х	ppm/K	0 to 140°C	ASTM E 831 IPC-TM-650, 2.4.41
Coefficient of Thermal Expansion - y		15	16	18	21	19	19	Υ	ppm/K	0 to 140°C	ASTM E 831 IPC-TM-650, 2.4.41
Coefficient of Thermal Expansion - z		23	21	26	20	20	20	Z	ppm/K	0 to 140°C	ASTM E 831 IPC-TM-650, 2.4.41
Thermal Conductivity		0.70	0.70	0.72	0.76	0.76	-	Z	W/m/K	80°C	ASTM C518
Mechanical Pr	operties(1)				9 0						
Copper Peel Strength after Thermal Stress		5.7 (1.0)	5.7 (1.0)	5.7 (1.0)	5.0 (0.9)	5.0 (0.9)	4.0 (0.7)	X,Y	lb/inch (N/mm)	after solder float 1 oz. EDC	IPC-TM-650 Method 2.4.8
Flexural Strength (MD/CMD)		16.53	15.91	15.02	13.62	-	-	X,Y	kpsi	Α	ASTM D790
Flexural Modulus (MD/CMD)		1.72	1.76	1.75	1.79	1.80*	-	X,Y	Mpsi	Α	ASTM D790
Physical Prope	erties ⁽¹⁾										
Moisture Absorption (2X2)	1.27mm (0.050")	0.06	0.07	0.06	0.09	0.16	0.16	-	%	D/24/23	ASTM D570
	3.18mm (0.125")	0.12	0.18	0.20	0.20	0.13	0.13				
Specific Gravity		1.78	2.07	2.37	2.77	2.77	3.0	-	-	Α	ASTM D792
Specific Heat Capacity		0.87	0.83	0.78	0.74	0.72*	-	-	J/g/K	Α	Calculated
Lead-Free Process Compatible		YES	YES	YES	YES	YES	YES	-	-	-	-

Notes: ASTM E831 corresponds to IPC-TM-650, method 2.4.41 * estimated

Technical paper "Dielectric Properties of High Frequency Materials" available on www.rogerscorp.com/acs.

(3) Method 2.5.5.6.

(3) Welliou 2.3.3.0.		
Standard Thickness	Standard Panel Size	Standard Copper Cladding
0.015" (0.381mm), 0.020" (0.508mm), 0.025" (0.635mm), 0.030" (0.762mm), 0.050" (1.270mm), 0.060" (1.524mm), 0.075" (1.905mm), 0.100" (2.540mm), 0.125" (3.175mm), 0.150" (3.810mm), 0.200" (5.080mm), 0.250" (6.350mm), 0.275" (6.985mm), 0.300" (7.620mm), 0.500" (12.70mm)	18" X 12" (457 X 305mm) 18" X 24" (457 X 610mm)	½ (18μm), 1 oz (35μm), 2 oz. (70μm) electrodeposited copper foil. Heavy metal cladding available. Contact Rogers customer service.

The information in this data sheet is intended to assist you in designing with Rogers' circuit materials. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers' circuit materials for

The Rogers' logo, TMM, and Helping power, protect, connect our world are trademarks of Rogers Corporation or one of its subsidiaries.

© 2018 Rogers Corporation, Printed in U.S.A., All rights reserved. Revised: 1396 100418 Publication #92-108

Notes: ASIM E831 corresponds to IPC-1 M-650, method 2.4.41 * estimated
Typical values are a representation of an average value for the population of the property. For specification values contact Rogers Corporation.

(1) Prolonged exposure in an oxidative environment may cause changes to the dielectric properties of hydrocarbon based materials. The rate of change increases at higher temperatures and is highly dependent on the circuit design. Although Rogers' high frequency materials have been used successfully in innumerable applications and reports of oxidation resulting in performance problems are extremely rare, Rogers recommends that the customer evaluate each material and design combination to determine fitness for use over the entire life of the end product.

(2) The design Dik is an average number from several different tested lots of material and on the most common thickness/s. If more detailed information is required, please contact Rogers Corporation. Refer to Rogers